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SUMMARY 

In this paper we study the validation of the new formulation (potential-stream vector) of the steady Euler 
equations in 2-D/3-D transonic lifting regime flow. This approach, which is based on the Helmholtz 
decomposition of a velocity vector field, is designed to extend the potential approximation of Euler equations 
for severe situations such as high transonic or rotational subsonic flows. Different results computed by a 
fixed point algorithm on the stream vector correction are shown and discussed by comparing them with 
those obtained by the full potential approach. 
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INTRODUCTION 

The full potential approach is still one of the simplest and most attractive methods to solve the 
steady Euler equations in the following two very useful cases: 

(1) subsonic regime with no vorticity or entropy on the upstream boundary 
(2) transonic regime with weak shocks and no upstream vorticity or entropy. 

When shocks are strong or vorticity is non-zero on the upstream boundary, we introduce the 
Helmholtz decomposition of a vector field into a gradient of a scalar potential 4 plus a curl of 
a stream vector JI. JI will be interpreted as a correction to the potential flow in order to generalize 
the full potential model for solving the steady Euler equations in most subsonic and transonic 
cases. This new formulation leads to a fixed point algorithm for JI; the main ingredients of this 
algorithm are the following: 

(1) a least-squares method to compute 4 by solving the non-linear potential equation 
(2) a characteristics method to compute the shocks and to transport the entropy, the helicity 

(3) a P' finite-element method to compute Jr. 
and the enthalpy 

*Based on a contributed paper 
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In the first section, we present the motivation and the objectives of this work. In the second 
section, we recall the theoretical aspects of the Helmholtz decomposition'*2 of (L2(12))3 into two 
orthogonal subspaces and how to use it for deriving a (+$) formulation of the steady Euler 
equations. In the third section, we introduce a fixed point algorithm associated with the new 
formulation; we discuss in detail the shock detection step and we describe briefly the rest of the 
numerical tools involved in this algorithm. In the final section, numerical flow simulations- 
transonic lifting/non-lifting regime around 2-D/3-D NACAOOl2 profiles and wings for severe 
test cases-are presented in order to improve the robustness and the validity of the methodology. 

MOTIVATION 

For simplicity, we consider the following two classical cases which are very useful in numerical 
aerodynamics applications: 

(1) an external flow (Figure 1) around a portion of wing between two parallel walls, where the 

(2) an internal flow (Figure 2) in a nozzle, where the upstream boundary conditions of the 
regime is supposed transonic 

vorticity (resp. the entropy) are non-zero (resp. non-constant). 
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We denote by [v]~ the jump of the variable v across the discontinuity X. 
Generally, steady flows are described by the continuity equation 

V.(pu) = 0. (1) 
In the transonic regime with weak shocks or in the subsonic regime with an upstream boundary 
condition of vorticity close to zero and under the hypothesis of isentropic perfect gas law, these 
flows governed by (1) are usually well approximated by the equation 

V.((H - lvf#l2/2)1’y-1v4) = 0,  (2a) 

V.(P V4)  = 0 ,  (2b) 

u = v 4 ,  o = v x u = o .  (3) 

known as the ‘potential transonic equation’, which can be written as 

where H is given and the velocity assumed as a curl free vector field, i.e. 

More precisely, the assumption (3) means that the entropy S is constant in the flow or its 
jump across the shock Z is close to zero (the rotational effects are neglected). But unfortunately, as 
shown in the first example for external flow, if the regime is a high transonic one, a strong shock 
appears and S is no longer constant and its jump is no longer small; similarly, in the second 
example for internal flow, the non-zero upstream boundary conditions of the vorticity make the 
entropy non-constant in the flow. So through these two examples we observe the non-validity 
of the potential hypothesis (3) because the rotational effects are not taken into account by the 
model; then (2a) or (2b) is not available in such cases and as mentioned before, since o = V x u 
is not small, we shall use the Helmholtz decomposition of the velocity 

u = v l $ + v x \ I r  (4) 
in order to generalize the potential approach (2) for severe situations, where JI will take into 
account the rotational part of the flow. 

The main idea of the new formulation is to use (4) in (1) and then to solve the modified 
potential equation 

V.(p V4) = - v p * v  x JI .  (5) 
In fact ( 5 )  will be solved iteratively where we suppose p to be a known function of u at each 
iteration. The stream vector + involved in the second member of (5 )  will be calculated as the 
solution of 

v x v x \Ir = o( = v x u), (6) 
where o is a simple algebraic expression obtained after some transformations on the Euler 
equations as explained in the next section. We assume for a first guess that the velocity is known, 
and then by solving (5)-(6) iteratively the velocity will be updated by (4) at each step, and so 
on. The system (5)-(6) describes the (4-JI) formulation. 

THE (4-JI) FORMULATION 

Before the description of the (+-+I) formulation, we recall briefly some theoretical aspects of 
the Helmholtz decomposition (4) detailed in References 1 and 2. The fundamental problem is 
to define a set of suitable boundary conditions on 4 and + yielding the uniqueness of such a 
decomposition. In fact the principal difficulty concerns the boundary conditions on JI, as explained 



1194 F. EL DABAGHI ET ,415. 

by the following. By taking respectively the divergence and the curl of (4), we obtain 

A 4  = V.U (7) 
and 

v x v  x Jr=v x u. 

Then, by adding to (7) one of the two Neumann boundary conditions (this choice was guided 
by physical considerations easily understood if we remark that our goal is to extend the potential 
approach), we obtain 

or 

Equations (9a) and (9b) imply respectively the two non-standard boundary conditions on Jr (but 
natural from a physical point of view), 

and 

Equations (10a) and (lob) will be replaced respectively by the two standard boundary conditions 
on Jr (but not natural from a physical point of view), 

Jr x nlr=O 
and 

which is a straightforward application of the Green's formula 
r r 

(v x n).Vw do = - (V x v).nw do, V w€H'(R), VE(H'(R))~,  
Jr Jr 

where $d must satisfy 

(V x \Ird).nlr = u-nl,. (13) 
Formally, the problem (7)-(9) on 4 in the 2-D or 3-D cases is well posed in H'(R)/R. On the 
other hand, while the 2-D problem (8)-(11) defines a unique Jr in H'(R), the 3-D one does not 
define Jr even up to a constant because the operator V x V x is a strongly elliptic operator 
only on the solenoidal vector spaces. This last condition, detailed in Reference 3, is justified by 
the following operator identity: 

V x V x $ = - A$ + V(V*Jr), V Jr . (14) 

Remark 1. In 2-D, the ellipticity condition of V x V x is automatically satisfied because $ is 
orthogonal to the fluid motion and has only one component, so its divergence is zero. By another 
way, the boundary conditions ( l l a )  and ( l lb )  on $ become respectively $lr=O and 
Jrlr = $ d l r .  In 3-D, $ has three components, which do not represent stream lines. 

Since our purpose is to generalize the full potential approach, we will consider only (7)-(9a) 
and (8)-(1 la) as stated by the following theorem. 

Theorem. Let R be a bounded open domain of R3, simply connected; let T be its boundary 
C'-differentiable and C2-piecewise (r = Ui= Ti, Ti being the connected component of r). Let 
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u be a given vector field in (L2(R))3. Let 4 and Jr be respectively the unique solutions of the 
problems 

(V4,Vw) = (u,VW), V WEH'(R)/R, ~ E H ' ( R ) / R  (15) 

(V x Jr,v x v) +(V.Jr,V.V) = (u,V x v), VV€V, $€V, (16) 
where 

Then 

v ~ ( H l ( 0 ) ) ~ :  v x nl, = 0, 

u = V 4 + V x J r  and V.Jr=O 

and the decomposition (17) is unique in {H'(R)/R} x {V}. (The proof is detailed in 
References 1 and 2.) 

The other alternative given by (7)-(9b) and (8)-(1 lb) is also discussed in References 1 and 2, 
and we mention quickly that the difficulty in this case is caused by a Laplace-Beltrami problem 
on r associated with (13) to determine Jrd;  for technical reasons the equivalent theorem stated 
in this case requires more regularity on the vector u, namely V ueL2(R), and a flux condition 
on Ti. The variational formulation on Jr is quite similar, the difference being that (JI - Jrd)€V. 

Remark 2. Problem (16) has a unique solution because the bilinear form in (16) defines an inner 
product on V (cf. Reference 2). Then if u represents a velocity vector field describing a transonic 
flow for example, 4 will be the scalar potential describing the general aspects of the flow and 
Jr will be the stream vector describing the rotational part of the fluid. 

This remark will be very useful, because if the vorticity tend to zero, it yields JI tending also 
to zero. Indeed 

(18) 
and by the last remark we obtain JI = 0 and u = V4; we find again the potential formulation. 
So Jr can be used as a rotational correction to the potential via the theorem in high transonic 
or rotational subsonic flows. 

(V x JI, v x v) + (V-Jr, v-v) = 0, VV€V, JI€V 

Remark 3. In 2-D, V = H@); i.e. H'(R) with zero trace on r. 
Now let us describe the (4-JI) process; at first and as mentioned in the previous section, 

the main idea involves computing Jr by solving (8), which implies known vorticity in order to 
update the velocity by (17). To determine o we suppose for a first guess a potential solution 
given by u = V$ calculated by solving (2b), and after this recall of the steady Euler equations 
for inviscid flow and the thermodynamical relations linking the variables involved in these 
equations we will describe how to compute w: 

V Q u )  = 0 (mass conservation), (19) 

V.(pu 0 u) + Vp = 0 (momentum conservation), (20) 

V.(pEu + pu) = 0 (energy conservation), (21) 

p = pYS (state gas law), (22) 

V-(psu) 2 0 (second thermodynamic principle), 
where s = eslcv 

9 
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Combining (19) and (24c) in (20), leads to 

p VH - PU x o - [py/(y - l)] VS = 0. 

Then, by taking the cross product of (25) with u, we find an new algebraic formula for the 
vorticity given by 

where the scalar I (close to the helicity) is defined by 

O ' U  I = -  
PlUI2' 

So through (26) we observe that determining o needs H, S ,  I and p as known variables. We 
remedy this situation by noticing that o is solenoidal (V-o = 0) and this leads to a transport 
equation for A: 

pu*VI=  -V-[; x (-VS-VH)] p Y  - 1 

where H, S and p are determined by the classical relations obtained easily as follows. Using 
(19) and (24b) in (21), we obtain the transport equation for H 

u*VH = 0. (29) 
Taking the inner product of (26) with u and using (29) we derive also a transport equation 
for S: 

u - v s  = 0. (30) 
Finally, by using (22) in (24c), a simple equation for p is obtained: 

At this point H, S ,  p and I can be computed in sequence successively from (29), (30), (31) 
and (28), then o is determined by (26) and thus the rotational correction \Ir can be calculated 
by solving (8)-(11a); finally u can be updated via (17) by solving the modified potential 
equation (5). 

Remark 4. The equations derived for S ,  A, p and o are not valid across shocks; we have to 
add locally the Rankine-Hugoniot conditions detailed in Reference 1, which give the jump value 
of such variables through the discontinuities. 

METHOD OF SOLUTION 

From the above considerations described in the first section, we introduce the following fixed 
point algorithm on JI operating for the 2-D/3-D general situation. 

Step 0. For initialization we consider an isentropic potential flow in order to compute a first 
guess for uo as follows: \Ira = 0, So = S,, Ho = H,, I' = I ,  (,: at upstream infinity). Compute 
uo = Vq5O by solving the full potential equation (2) and then po by (31). We order the equations 
to be solved as described by the following steps: 
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Step 1 .  Solve um-VHm+' = 0 in R with Hm+'lrin = H " Jrin j H m + l .  

Step 2. Solve U".VS"'+~ = 0 in R with Sm+'Jrln = Smlrin+S"'+' 

Step 3. Solve (28) in R with Arn+'Jrin = Amlrin (in the 2-D case, A = 0)*Am". 

Step 4.  Compute d'"'' by (26)*~0"'+~. 

Step5. S o l v e V ~ V x $ " + ' = o " + ~  in R with (l la) on r+$'"+l, 

Step 6.  Solve V*p"( lu'"l) V@"+' = - Vp".V x $I"" in R with (9a) on r-#"+l. 

Step 7. Update urn+' by (4) and p"" by (31)=>u"+', pm+l.  m = m +  1, go to Step 1 until 
convergence of the rotational correction. 

Before the description of the numerical methods involved in this algorithm, we shall introduce 
some classical definitions to clarify the discretization. Let R, be a polygonal approximation of 
R; we shall use the simple P' finite element for discretization; let T, be a regular triangulation 
of a h :  

T, = u { T,},  k = 1, NT (NT: number of tetrahedra/triangles; NS: number of nodes) 
In the following, we will describe the methods used in the above algorithm. 

Transport of H ,  S and L 

transport equations involved in Steps 1, 2 and 3 are of the type 
Let u -  and u +  be the upstream and downstream value of a variable v on the shock surface Z. The 

u.Va= f (32) 

where u and f are given on T,. This transport model equation has an analytical solution given by 

a(x)  = a,(X,) + f (X(o))do + a+(X,) - a-(X,) ,  x d 2  (33) I.- 
where o is the curvilinear variable of the stream line C ( x )  that passes through x .  C ( x )  is defined 
by the curve X(*) 

- = u(X(o)), o ~ ] o , , O [ ,  X(o,) = X, and X(0) = x ,  
dX 
do (34) 

where X, and X, are respectively the intersection of C ( x )  with the upstream boundary Tin and the 
shock surface Z. Since u is Po on T,, C ( x )  is a broken line, where each piece represents the direction 
of u in a { T,} ET, crossed by C(x) ,  i.e. 

N -  1 

C ( x ) =  u [x i , x i+ ' ] ,  x l = x ,  x N = X m  
i =  1 

(35) 

and N is the number of { T,}ET, crossed by C ( x ) .  The vertices 
follows: 

of C ( x )  are computed as 

find ti > 0 such that xi  = x i - '  - & I T k ,  (36) 

where xi  and xi-' are one the frontier of {Tk} and ti represents an artificial time; we note that system 
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(36) describes the flow going upstream and xN is reached when the characteristic arrives at the 
upstream infinity Tin. By another way, if system (36) is written in terms of the barycentric 
coordinates { p j }  j =  1,4 ofx' in { Tk}, it becomes easier to compute ti and to find the next element { T,  } 
adjacent to { Tk}; indeed, (36) leads to 

4 .  4 

1 pjq'= 1 Kjqj-t'UIT*, t i>O,  
j =  1 j =  1 

(37) 

where {Kj}j=1,4 are the barycentric coordinates of xi-' in {Tk} and {q j } j=1 ,4  are the global 
coordinates of the nodes of { Tk}. We add to equation (37) the following constraints: 

4 4 

j = 1  1 p j =  j = 1  1 K,=1, p j L j o ,  K j > O  (384 

3cr,b~{1,2,3,4}, a # P  such that p a = O  and K , = O  (if xi-' #XI). (38b) 

(39) 

To solve problem (37)-(38) we first introduce a new variable { t j } j = 1 , 4  defined by 

t j  = ( p j  - Kj)/t',  j = 1,4 
and then we rewrite the system (37)-(38) according to the new unknowns: 

System (40) is a (4 x 4) simple linear system solved quickly to determine { t j }  j =  Then by using 
(38b) with an elimination process we compute {p,} j =  1!4 of xi, and by the same technique we 
determine { T,  } adjacent to { Tk} to start up again from x' to find xi+'  in { Tl }, and so on. This last 
step has to be done carefully in order to avoid jamming and particularly to detect C by testing the 
Mach number on {Tk} and { T,}  in order to compute a+  and a -  given by the Rankine-Hugoniot 
conditions. 

Remark 5 .  The relative simplicity of the analytical concept of the characteristics method is not 
comparable with the discretization difficulties encountered during the computation. These 
difficulties are essentially due to: 

(1) the non-zero divergence of the computed transport velocity field (which poses the interface 
problems on the elements) 

(2) the slip boundary conditions on rB are satisfied in a weak sense in the solution of the 
modified potential equation (5) 

(3) the round-off errors (for more details see Reference 4). 

This method of characteristics is not dissipative and unconditionally stable in a finite-element 
context (see Reference 5). We are actually developing an adaptive mesh algorithm in 2-D by 
defining a new triangulation generated by the vertices taken on the curves C(x,), where {xa} are 
choosen previously on Tout. The new mesh following the stream lines will be concentrated only 
around special areas (for example, shock surfaces and lift linest in order to reduce the number of 
nodes of the triangulation and to obtain best precision of calculations. 

Calculation of the stream vector JI 

problem 
Since o is computed in Step 4 by (26), equation (6) involved in Step 5 is equivalent to the variational 
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(V x +,v x y) + (V.+,V*v) = (0, v), VV€V, +€V.  (41) 

This formulation is discretized by classical P' piecewise linear functions (see References 1 
and 2); we introduce the space Vh as an approximation of V in the sense that, VVEV,  there 
exists a VhEVh such that 

I I v  - vh 1 1  l , R  < Ch, (42) 

where C is a positive constant and h is the greatest element edge length. We denote respectively 
by NI and N F  the number of interior and boundary nodes (NS = NI + NF). The space V, can 
be defined as 

with n j  the unitary normal defined on the nodej, wi(x) the classical P' piecewise linear functions, 
and +' defined by 

1 +:ej, the value of +h at the interior node i $'= I' ' = I  (44) 
(<in', the value of +h at the boundary node i. 

The discretized problem of (41) is equivalent to solving a linear system in R3N1+NF computed by a 
preconditioned conjugate gradient algorithm; as indicated on Figure 3, this system has very nice 
features for CPU time and for memory storage. 

F' represents the second member of (41); D, B and E are the block matrices defined by 

Dij = (Vw', Vwj), 1 < i, j < NI, 

Bkj=Dijnjk, k =  1,2,3, 1 <<<"I, N I + I  < j < N S ,  (46) 

(45) 

Eij = ninJDij + (n' x nj). Vw' x Vwjdx, NI + 1 < i,j < NS. L (47) 

D and E are calculated once and stored in Morse form as a one-dimensional problem and 
{ni} i ,NI+l ,NS are also stored to construct B when it is needed. 

Remark 6. In the 2-D case, problem (41) becomes a simple Dirichlet one as follows: 

(V+, VV) = (0, v), v VEV, +EV. (48) 

Calculation of the scalar potential 4 
The potential and modified potential equations (2b)-(5) involved in Step 0 and 6 are treated 

similarly by a least-squares method detailed in References 6-8. Notice that the uniqueness of a 

NI NI NI N F  

NI D 0 0 B' vl 
NI 0 D 0 B2 Jl; 
NI 0 0 D B3 v3 
NF B' B2 B3 E 5' 

= Fi 

Figure 3. Linear system associated with the discretized V x V x operator 
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physical solution is achieved by upwinding the density in the flow direction when shocks occur and 
by satisfying the Kutta-Joukowski condition for lift generation. The discrete variational problems 
associated with these equations are solved iteratively by a Buckley-Lenir algorithm' (precondi- 
tioned conjugate gradient method combined with a quasi-Newton method) and impressive results 
in CPU time are obtained compared with those obtained by a standard preconditioned conjugate 
gradient algorithm. 

NUMERICAL RESULTS 

We consider in this section the solution of various non-linear 2-D and 3-D transonic external flow 
problems by the stream vector correction method described in the second section. Previous results 
concerning, among others, subsonic rotational internal flows can be seen in References 1,4,6 
and 10. 

2 - 0  transonic lijling/non-lijling cases 

We present different 2-D non-lifting (M, = 0-85, a = 00) and lifting ( M ,  = 0.78, a = 1") 
computations around a NACA0012 airfoil. These computations were done on a finite-element 
mesh having 2354 nodes and 4568 triangles, an enlargement of which is shown in Figure 4. For 
each test case, we compare the solution of the non-rotational potential scheme with the rotational 
correction one. 

We can observe that the shock comes back towards the leading edge (Figures 5(a) and 6(a)) 

Figure 4 
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Figure 5(a). Mach distribution: angle of attack 0.00, free-stream Mach 0.85 

Figure 5(b). Isoentropy lines: angle of attack 000, free-stream Mach 0.85 



1202 F. EL DABAGHI ET AL. 

MRCH 

f MIN = @.li22 
MRX = 1.389 

Q 

Figure 6(a). Mach distribution: angle of attack 1.00, free-stream Mach 0.78 

c- 
Figure 6(b). Isoentropy lines: angle of attack 1.00, free-stream Mach 0.78 

in the two cases. The non-dissipative character of the scheme is illustrated by the isoentropy 
lines (Figures 5(b) and 6(b)). 

If we want a computation at M ,  = 0.85 and ci = lo,  it is impossible to catch the potential 
solution because the Mach number at infinity is too large and the shock comes downstream to 
the trailing edge, with the result that the Kutta-Joukowski condition cannot be satisfied. Thus 
we use as initial guess the solution of the flow at M, = 0.80 and ci = 1". In this way, it is possible 
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to reach the Euler potential solution. We present respectively in Figure 7(a) and 7(b) the Mach 
distribution and the isoentropy lines; we verify again the non-dissipative character of the entropy 
distribution. 

Another interesting result is presented in Figure 8. It is possible to draw the curve CL function 
of the angle of attack for a given Mach number M ,  = 0.83; on this figure we perform with the 
transonic potential code multiple CL solutions for a given angle of attack, while the same 
computation with the $ correction code shows a unique value of CL. The comparison seems 
to indicate that multiple solutions occur only for potential calculations. 

3 - 0  transonic lifting/non-lifting cases 

We set two different computations around a NACAOO12 wing between walls. The first is a 
non-lifting flow one at M, = 0.85 and a = 0". The second one is lifting at M ,  = 0 8 5  and c1= 1". 

MACH 

HIN = N.429 
M A X  = 1 . K O  

I - 
- 

I I 1  I I I I I I I I I I I l-t-4-J 

8.58 1.80 x,c3 
Figure 7(a). Mach distribution: angle of attack 1.00, free-stream Mach 0.85 
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Figure 7(b). Isoentropy lines: angle of attack 1.00, free-stream Mach 0.85 

1 P o t e n t i a l  

NRCR00 12 

HINF = fIl.83 

Figure 8. NACA0012: MINF = 0.83 

For these two cases, we present respectively the entropy and the Mach distribution of the 
corrected velocity in Figures 9 and 11, and the entropy and the Mach level on the wing surface 
in Figures 10 and 12; as in 2-D, we verify again the non-dissipative character of the entropy 
distribution. 

CONCLUSION 

In both 2-D and 3-D computations, the comparison between the entropy level and the Mach 
distribution coming from Euler solutions and from our (+$) Euler solution point out the 
ability of this method to compute Euler flows without entropy dissipation. In all cases, we only 
need a few iterations (in practise two or three) to reach a satisfactory correction for the potential 
solution. Coupled with domain decomposition methodology, this modelling approach seems 
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Mach distribution 
Figure 9 

attractive in terms of CPU time where the iterative process (++) will be used only on selected 
subdomains of the flow. 
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NOTATION 

R 
r 

Bounded domain of R3 ( R2) 
rin u rout u r,: boundary of R 
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En t rcpy 

i nn . 
1 ."" . I 

Piach 
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Mach distribution 

Upstream boundary 
Downstream boundary 
Slip or body boundary 
Outward unit normal defined on r 
Velocity 
Stream vector (or vector potential) 
Scalar potential 
Density 
Pressure 
Total energy 

1207 
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Ent ropy  

Mach 

1.48 I 

, 
T 

Figure 12 
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Total enthalpy 
Specific entropy 
Modified entropy 
Vorticity 
C,/C,, specific heat ratio ( %  1.4 for air) 
Divergence 
Gradient 
Laplacian 
Curl 
uivj (tensor product) 
Cross product between u and v 
Inner product between u and v 
Inner product between u and v in L2(R),  11 - the associated norm 
{ w € L ~ ( f J ) : v w  € (LZ(Q))3} 

(llwll;,n+ llvwll;,*)1’2, the norm 
{H’(Q) quotiented by the constants} 
Local orthonormal positive direct co-ordinate system defined on r with (sl, s2) 
tangent to r and orthogonal to n. 
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